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Abstract— Berenger recently published a novel absorbing

boundary condhion (ABC) for FD-TD meshes in two dimensions,
claiming orders-of-magnitude improved performance relative
to any earlier technique. Thk approach, which he calls

the “perfectly matched layer (PML) for the absorption of
electromagnetic waves,” creates a nonphysical absorber adjacent
to the enter grid boundary that has a wave impedance

independent of the angle of incidence and frequency of outgoing
scattered waves.

This paper verifies Berenger’s strong claims for PML for
2-D FD-TD grids and extends and verities PML for 3-D FD-TD
grids. Indeed, PML is >40 dB more accurate than second-order

Mur, and PML works just as well in 3-D as it does in 2-D. It

should have a major impact upon the entire FD-TD modeling

community, leading to new possibilities for high-accuracy

simulations especially for low-observable aerospace targets.

I. INTRODUCTION

o VER THE past ten years, finite-difference time-domain

(FD-TD) solutions of Maxwell’s equations have been

extensively applied to model open-region electromagnetic

wave scattering problems. Here, a primary challenge has

been in the area of absorbing boundary conditions (ABC’s)

at the outer grid boundaries. Existing analytical ABC’s,

such as Mur [1] and Liao [2], provide effective reflection

coefficients in the order of – 35 to –45 dB for most FD-TD

simulations. To attain a dynamic range of 70 dB, comparable

to that of current RCS measurement technology, 40 dB more

accurate ABC’s are needed than currently exist.

Such an advance appears to be at hand with the

recent publication of Berenger’s “perfectly matched

layer (PML) for the absorption of electromagnetic waves [3].”

PML involves creation of a nonphysical absorber adjacent

to the outer grid boundary that has a wave impedance

independent of the angle of incidence and frequency of

outgoing scattered waves. In 2-D, Berenger reported reflection
coefficients for PML as low as l13000th those of standard

second- and third-order analytical ABC’s such as Mur.

In this letter, we confirm these remarkable claims and

then extend and verify PML for 3-D Cartesian FD-TD grids.

Section II briefly summarizes key elements of Berenger’s
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published 2-D PML theory [3]. Sections III and IV report

our contributions, specifically the extension of PML to 3-D

and the confirmation of the approach in 2-D and 3-D.

II. TWO-DIMENSIONAL TE CASE [3]

Consider Maxwell’s equations in 2-D for the transverse

electric (TE) case with field components E., EY, and Hz.

If o and m“ denote electric conductivity and magnetic loss

assigned to an outer boundary layer to absorb outgoing waves,

respectively, it is well known that:

O/&. = ff*//LLo (1)

provides for reflectionless transmission of a plane wave prop-

agating normally across the interface between free space and

the outer boundary layer. Layers of this type have been used in

the past to terminate FD-TD grids [4]. However, the absorption

is thought at best to be in the order of the analytical ABC’s

because of increasing reflection at oblique incident angles.

The PML technique introduces a new degree of freedom

in specifying loss and impedance matching by splitting 17Z

into two sub-components, HZZ and HZ ~. Here, there are four

(rather than the usual three) coupled field equations:

(2a)

~HZZ aEv
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—+o:HZZ = –—

ax
aHz, aEz

‘“ at
— + O;HZY = —

ay

(3a)

(3b)

Note that the TM case is obtained by duality, with E, split
into E== and EZY. Designating ~ as any component of a wave

propagating

‘@Z

z=

where Z is

is the angle

axis. and

in a-PML medium, Berenger shows that:

$oeJ~(t- ‘cO’wszn’$)e-*ze--Y (4a)

~G/G (4b)

the wave impedance, c is the speed of light, @

between the wave electric field vector and the y

G = Wz COS2 ~ + WY sinz + (5a)
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Now, let each pair (a., @ and (aY, ~J) satisfy (1). Then,

w=, WY and G equal one at any frequency, and the wave

components and the wave impedance of (4) become:

,# = ~oejw(t- ‘ ‘Osy’”@ )e-=y#a&*Y ((ja)

z=l/G (6b)

Equation 6 shows that the wave in the PML medium prop-

agates with exactly the vacuum speed of light, but decays

exponentially along z and y. Equation 6 also shows that the

wave impedance of the PML medium exactly equals that of

vacuum regardless of the angle of propagation or frequency.

In a 2-D TE grid ($ and y coordinates), Berenger proposes

a normal free-space FD-TD computational zone surrounded

by a PML backed by perfectly conducting (PEC) walls. At

both the left and right sides of the grid (~~in and Zmax),

each PML has a$ and @ matched according to (1) along with

* = O to permit reflectionless transmission across themy = av

vacuum-PML interface. At both the lower and upper sides of

the grid (y~in and y~J, each PML has ay and o; matched

according to (1) along with ax = o; = O. At the four

corners of the grid where there is overlap of two PML’s, all

four losses are present (o., o:, CJg,and a;) and set equal to

those of the adjacent PML’s. Berenger proposes that the loss

should increase gracefully with depth, p, within each PML as

c(p) = om=(p/8)”, where 6 is the PML thickness and o is
either a. or ag. This yields a PML reflection factor of

R(O) = e-zum”x~ ‘Os‘j(n+~)s”c’ (7)

which reduces to a key user-defined parameter discussed
later, ~(o) = e–2um=8/(n+ll&0 c, the theoretical reflection

coefficient at normal incidence for the PML over PEC. While

RN 1 for grazing incidence, this has not been a problem in

actual FD-TD simulations since such a wave is near normal

on the perpendicular PML boundaries and is absorbed.

The attenuation to outgoing waves afforded by a PML

medium is so rapid that standard Yee time-stepping cannot

be used. The following is a suitable explicit exponentially

difference time advance [3], [5]:

III. EXTENSION TO THE FULL-VECTOR

THREE-DIMENSIONAL CASE

This section and the next represent the contributions of

this letter.1 In three-dimensions, all six Cartesian field vector

components are split and the resulting PML modification of

Maxwell’s equations yields 12 equations, a~ followw

(9b)

1Note added in proofi See also [7]
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(9C)

(9d)

(9e)

(9f)

(lOa)

(lOb)

(1OC)

(lOd)

(lOe)

(lot-)

PML matching conditions and grid structure analogous to the

TE and TM cases are utilized.

IV. NUMERICAL EXPERIMENTS

We conducted numerical experiments that implemented the

PML ABC in Cartesian, cubic-cell FD-TD grids, including 3-

D grids, and compared its accuracy versus well-characterized

Mur second-order ABC’s. Our methodology was identical to

that published in [6]. Cases discussed here include: 1) 2-D TE

grid, vacuum region = 100x 50 cells; and 2) 3-D full-vector

lattice, vacuum region = 100 x 100 x 50 cells.

The experiments involved exciting a pulse source centered

within the vacuum region of a test grid, ~T. The excitation

was a “smooth compact’ pulse” having an extremely smooth

transition to zero (its first five derivatives vanishing) [6]. ~T

was terminated by either second-order Mur or by a PML

backed by PEC walls. A benchmark FD-TD solution having

zero ABC artifact was obtained by running a large mesh, fl~,

centered upon and registered with ~T, and having an outer

boundary so remote as to be causally isolated from all points

of comparison between the grids.

The error of the computed fields in ~T due to nonphysical

reflections by the grid’s imperfect ABC were obtained by

subtracting the field at any point within this grid (and at any

time step) from the field at the corresponding space-time point

in ~B. The error could be measured locally, i.e, plotted versus

position along a line or plane parallel to the test ABC. Or,

the error could be measured globally as the sum of the squares

of the error at each grid point of QT.

Fig. 1 graphs the global error energy for the 2-D TE grid for
both Mur and PML. The Mur ABC is standard second-order,

and the PML thickness is 16 cells. At n = 100 time steps, the

PML global error energy is about 10-7 that of Mur, dropping

to a microscopic 10–12 x Mur at n = 500.

Fig. 2 compares the local electric field error due to Mur and

16-layer PML for the 3-D FD-TD grid, as observed at n = 100
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Fig. 1. Global emorenergy (squ~eofthe electiic field emorateach grid cell
summed throughout the entire grid) withkr the 100 x 50cel12-DTEFD-TD

grid for both thesecond-order Mur ABC and the 16-celI-thick PML, plotted

as a function of time step number on a logarithmic vertical scafe.
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Fig. 2. Local electric field error along the x axis at the outer boundary of
the 100 x 100 x 50 cell 3-D FBTD grid for both the second-order Mnr
ABC and the 16-cell-thick PML, plotted onalogmithtic vertical scale (time
step = 100).

time steps along the z axis at the outer boundary of ~T.

Along this straight-line cut, the local electric field error due

to PML is in the order of 10–3 that of Mur (i.e., about –60
dB) at a time when the ABC is being maximally excited by

the outgoing wave.

In the cases of both Figs. 1 and 2, we studied the effect

of varying PML thickness and the R(O) parameter for a

quadratically-graded loss with depth. For a fixed PML thick-

ness, we find that reducing R(0) by increasing the PML

loss monotonically reduces both the local and global errors.

However, this benefit levels off when R(O) drops to less

than 10–5. We rdso observe a monotonic reduction of local

and global error as the PML thickness increases. Here, how-

ever, a significant trade-off with the computer burden must

be factored, as discussed next. Overall, the method is very

TABLE I

TRADE-OFF OF PML ADVANTAGE OVER SECOND-ORDER MUR VERSUS

COMPUTER RESOURCES FOR A 3-D BASE GRID OF 100 x 100 x 50 CELLS

Av. Local
Field Error Computer If Free-Space If Free-Space

ABc Reduction Resources Buffer Buffer

Relative to (One CPU, Reduced by 5 Reduced by

2nd-Order Crav C-90) Cells 10 Cells. .
Mur

Mur 1 (O dB) 10 Mwd 6.5 _
sec

4-layer PML 22 (27 dB) 16 Mwd 12 11 Mwdll 7Mwd10sec
sec sec

8-layer PML 580 (55 dB) 23 Mwd 37 17 Mwd 31 12 Mwd 27

sec sec sec

16-layer 5800 (75 dB) 43 Mwd 87 33 Mwd 74 25 Mwd 60

PML sec sec sec

insensitive to the choice of R(0) and therefore losses for

R(0) < 10–5, indicating robustness.

Table I compares ABC effectiveness and computer burdens

for second-order Mur and PML of varying thickness for the 3-

D grid. Here, the arithmetic average of the absolute values of

the local electric field errors over a complete planar cut through

the grid at y = O and n = 100 is compared for Mur and

PML. The last two columns indicate the potential advantage

if the free-space buffer between the scatterer and the outer grid

boundary were reduced by either 5 or 10 cells relative to that

needed for Mur, taking advantage of the essential invisibility

of the PML ABC. From these results, a PML layer 4 to 8

cells thick appears to present a good balance between ABC

effectiveness and computer burden.

V. CONCLUSION

This letter verifies Berenger’s strong claims for PML for

2-D FD-TD grids and extends and verifies PML for 3-D

FD-TD grids. Indeed, PML is > 40 dB more accurate than

second-order Mur and works just as well in 3-D as in 2-

D. It should have a major impact upon the entire FD-TD

modeling community, leading to new possibilities for high-

accuracy simulations, especially for LO aerospace targets.
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